2024年北京航空航天大学非全日制研究生招生考试《机器学习》考试大纲
一、复习要点
(一) 机器学习基础算法:(1)Bayesian学习以及相关算法;(2)Q学习基本概念;(3)归纳学习-决策树构建算法。
掌握机器学习发展历史、AlphaGO技术的发展历史以及核心技术,掌握Q学习的基本方法;掌握VC维的定义,以及统计学习理论的基本结论,深入理解经验风险和真实风险概念区别与联系;理解Bayesian的基本原理,贝叶斯学习、朴素贝叶斯算法在相关实际问题中应用;掌握HMM算法的基本原理;掌握信息熵概念的内涵、ID3算法构建过程、根据具体的实例,构建决策树。掌握信息增益的概念,以及在构建决策树时的物理含义。
(二)神经网络与深度学习:(1)线性分类器-感知机等;(2)传统神经网络-BP算法等;(3)深度学习-卷积神经网络等。
掌握线性分类器的构建方法,包括线性分类器的基本形式、构建方法;掌握感知机的构建方法、Fisher准则、最小均方误差准则。掌握机器学习里优化概念如何应用于线性分类器的设计。理解神经网络的反传算法基本原理、能够根据具体简单的网络实例写出反传公式的基本形式。了解经典深度神经网络模型、以及前沿技术,主要掌握卷积神经网络;理解卷积神经网络的构建过程、包括卷积操作的定义、Pooling操作的定义等。
(三)统计学习分类器:(1)支持向量机;(2)Adaboost算法;(3)子空间学习与稀疏表示。
理解统计学习理论的基本原理、支持向量机的基本原理与线性分类器的联系。掌握支持向量机的优化目标构造方法、优化算法以及应用。掌握Adaboost的基本原理,弱分类器的基本概念以及分类器融合算法。掌握子空间学习与稀疏表示的基本概念与思想,掌握主成分分析方法的具体过程、优化目标以及应用。基本了解Fisher判别分析、核判别分析等等;了解稀疏表示方法与子空间学习的联系与区别。
报考资格评估
- 大专以下
- 大专
- 本科有学位
- 本科无学位
- 硕士
- 博士